91成人国产网站在线观看_久久久久亚洲av成人毛片韩_国产偷窥真人视频在线观看_乳揉みま痴汉电车中文字幕_欧美日韩精品一区二区三区_九色视频网站

English | 中文版 | 手機(jī)版 企業(yè)登錄 | 個(gè)人登錄 | 郵件訂閱
當(dāng)前位置 > 首頁(yè) > 技術(shù)文章 > 細(xì)胞組織消化常用的幾種酶的選擇

細(xì)胞組織消化常用的幾種酶的選擇

瀏覽次數(shù):4594 發(fā)布日期:2020-5-25  來(lái)源:本站 僅供參考,謝絕轉(zhuǎn)載,否則責(zé)任自負(fù)

直接從生物體獲取的組織,一般需要將其消化成單個(gè)細(xì)胞才能進(jìn)行體外培養(yǎng)。這種直接從離體組織獲得的細(xì)胞,更接近于生物體內(nèi)的生活狀態(tài),且生物性狀尚未發(fā)生很大改變,因此在藥物篩選、細(xì)胞移植、類器官培養(yǎng)、腫瘤研究等眾多領(lǐng)域備受歡迎。但組織消化過(guò)程中常遇到多種問(wèn)題,例如消化不完全、細(xì)胞死亡率高等。如何克服這些問(wèn)題,其實(shí)消化酶的選擇是關(guān)鍵。
本文將為您介紹一些常用的消化酶及其適用組織,并為您羅列多種正常和腫瘤組織消化方案,供您參考。

來(lái)了解組織消化過(guò)程中常用的酶吧~

1.胰蛋白酶 
胰蛋白酶(Trypsin)是目前應(yīng)用最廣泛的消化試劑,通過(guò)作用于與賴氨酸或精氨酸相連接的肽腱,除去細(xì)胞間粘蛋白及糖蛋白,影響細(xì)胞骨架,從而使細(xì)胞分離。胰蛋白酶適用于消化細(xì)胞間質(zhì)較少的軟組織,如胚胎、上皮、肝、腎等組織。但對(duì)于纖維組織和較硬的癌組織的效果差,常常將胰蛋白酶與其他消化酶聯(lián)合使用。EDTA可以用來(lái)增強(qiáng)胰蛋白酶的水解功能,而血清則會(huì)影響胰蛋白酶的活性。

2.膠原酶 
膠原酶(Collagenase)通過(guò)水解細(xì)胞間質(zhì)的脯氨酸,從而使細(xì)胞離散。膠原酶對(duì)膠原的消化作用很強(qiáng),它僅對(duì)細(xì)胞間質(zhì)有消化作用而對(duì)細(xì)胞損害不大,因此適于消化分離纖維性組織和較硬的癌組織。鈣鎂離子和血清不會(huì)對(duì)膠原酶的活性及消化作用產(chǎn)生影響。
膠原酶可細(xì)分為Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ型膠原酶,不同類型膠原酶適用范圍不同(詳見(jiàn)下表)。

膠原酶類型及適用范圍表

3.透明質(zhì)酸酶 
透明質(zhì)酸酶(Hyaluronidase)通過(guò)隨機(jī)降解透明質(zhì)酸的β-N-乙酰己糖胺-[1-4]糖苷鍵,從而降低透明質(zhì)酸的活性,常與膠原酶等聯(lián)合使用,用于結(jié)締組織的分離。

4.脫氧核糖核酸酶Ⅰ
脫氧核糖核酸酶Ⅰ(DeoxyribonucleaseⅠ, DNaseⅠ)作用于細(xì)胞分離降解出的DNA,防止DNA導(dǎo)致的細(xì)胞凝集,對(duì)細(xì)胞完整性無(wú)破壞作用。通常配合膠原酶或透明質(zhì)酸酶等聯(lián)合使用,不會(huì)單獨(dú)使用。

5.中性蛋白酶  
中性蛋白酶(Dispase)具有溫和的蛋白酶水解活性,不會(huì)損壞細(xì)胞膜的完整性,常與膠原酶等聯(lián)合使用,其分離纖維樣組織的效率高于上皮組織。

6.彈性蛋白酶  
彈性蛋白酶(Elastase)通過(guò)作用于彈性蛋白的肽鍵、酰胺鍵和酯鍵將其水解,常與胰蛋白酶和膠原酶等聯(lián)合使用,用于分離結(jié)締組織和含有大量細(xì)胞網(wǎng)狀纖維的組織。

還有消化方案供您參考~
不同組織消化方案有所不同,同種組織的消化方案也不盡相同,考慮到組織的特殊性及酶的多樣性,針對(duì)具體組織仍需試驗(yàn)摸索以確定最佳消化方案。以下列表方法供大家參考。

表一:正常組織消化用酶列表
表二:腫瘤組織消化用酶列表

參考文獻(xiàn) 


1. Kasai-Brunswick TH., et al., (2017) Cardiosphere-derived Cells Do Not Improve Cardiac Function in Rats With Cardiac Failure. Stem Cell Res Ther. Feb 15;8(1):36.
2. Huch.M., et al., (2015) Long-term Culture of Genome-Stable Bipotent Stem Cells From Adult Human Liver. Cell. Jan 15;160(1-2):299-312.
3. Holt PG., et al., (1986) Extraction of Immune and Inflammatory Cells From Human Lung Parenchyma: Evaluation of an Enzymatic Digestion Procedure.  Clin Exp Immunol. Oct;66(1):188-200.
4. Campbell AM., et al., (1993) Modulation of Eicosanoid and Histamine Release From Human Dispersed Lung Cells by Terfenadine. Allergy. Feb;48(2):125-9.
5. Sanchez-Romero N., et al., (2020) A Simple Method for the Isolation and Detailed Characterization of Primary Human Proximal Tubule Cells for Renal Replacement Therapy. Int J Artif Organs. Jan;43(1):45-57.
6. Ataollahi F., et al., (2014) New Method for the Isolation of Endothelial Cells From Large Vessels. Cytotherapy. Aug;16(8):1145-52.
7. Leelatian N., et al., (2017) Single cell analysis of human tissues and solid tumors with mass cytometry. Cytometry B Clin Cytom. Jan;92(1):68-78.
8. Roberts EG., et al., (2019) Evaluation of Placental Mesenchymal Stem Cell Sheets for Myocardial Repair and Regeneration. Tissue Eng Part A Jun;25(11-12):867-877.
9. Jankovic-Karasoulos T., et al., (2018) Isolation of villous cytotrophoblasts from second trimester human placentas.
Placenta. Dec 15;74:55-58.
10. Tang YL., et al., (2007) A Novel Two-Step Procedure to Expand Cardiac Sca-1+ Cells Clonally. Biochem Biophys Res Commun. Aug 10;359(4):877-83.
11. Meyer J. ., et al., (2016) An optimized method for mouse liver sinusoidal endothelial cell isolation.
Exp Cell Res. Dec 10;349(2):291-301.
12. Nakano H., et al., 1799 (2018) Isolation and Purification of Epithelial and Endothelial Cells from Mouse Lung. Methods Mol Biol.:59-69.
13. Jain R. ., et al., (2014) Isolation of thymic epithelial cells and analysis by flow cytometry. Curr Protoc Immunol. Nov 3;107:3.26.1-3.26.15.
14. Tran LS., et al., (2018) Isolation of Mouse Primary Gastric Epithelial Cells to Investigate the Mechanisms of Helicobacter Pylori Associated Disease. Methods Mol Biol. 1725:119-126.
15. De Clercq K., et al., (2017) Isolation of Mouse Endometrial Epithelial and Stromal Cells for In Vitro Decidualization. J Vis Exp Mar 2;(121):55168.
16. Sharon, Y., et al., (2013) Isolation of Normal and Cancer-Associated Fibroblasts from Fresh Tissues by Fluorescence Activated Cell Sorting (FACS). J Vis Exp 71, e4425.
17. Zhang Q., et al., (2016) Isolation and Culture of Single Cell Types from Rat Liver. Cells Tissues Organs. 201(4):253-67.
18. Al-Eisa A., (2017) IgA Enhances IGF-1 Mitogenic Activity Via Receptor Modulation in Glomerular Mesangial Cells: Implications for IgA-Induced Nephropathy. Kidney Blood Press Res.;42(3):391-397. 
19. Githens  S., et al., (1994) Isolation and Culture of Rhesus Monkey Pancreatic Ductules and Ductule-Like Epithelium Pancreas. Jan;9(1):20-31.
20. Caperna TJ., et al., (2011) Culture of porcine hepatocytes or bile duct epithelial cells by inductive serum-free media In Vitro Cell Dev Biol Anim. Mar;47(3):218-33.
21. Ataollahi F., et al., (2014) New method for the isolation of endothelial cells from large vessels. Cytotherapy. Aug;16(8):1145-52.
22. Widowati W., et al., (2018) Isolation, Characterization and Proliferation of Cancer Cells from Breast Cancer Patients. Acta Inform Med. Dec;26(4):240-244. 
23. Beaupain R., et al., (1993) “Normal” breast cells adjacent to a tumor grown in long-term three-dimensional culture. In Vitro Cellular & Developmental Biology – Plant, 29(2): 100-104.
24. Leung C K., et al., (1982) Morphological and proliferative characteristics of human breast tumor cells cultured on plastic and in collagen matrix. In Vitro Cellular & Developmental Biology – Plant, 18(5): 476-482.
25. Chou J., et al., (2013) Phenotypic and Transcriptional Fidelity of Patient-Derived Colon Cancer Xenografts in Immune-Deficient Mice. PLOS ONE, 8(11).
26. Friedman E., et al., (1981) Tissue culture of human epithelial cells from benign colonic tumors. In Vitro Cellular & Developmental Biology – Plant, 17(7): 632-644.
27. Brattain M G., et al., (1983) Characterization of human colon carcinoma cell lines isolated from a single primary tumour. British Journal of Cancer, 47(3): 373-381.
28. Quatromoni J G., et al., (2015) An optimized disaggregation method for human lung tumors that preserves the phenotype and function of the immune cells. Journal of Leukocyte Biology, 97(1): 201-209.
29. Zhuang X., et al., (2015) Identification of novel vascular targets in lung cancer Br J Cancer. Feb 3; 112(3): 485–494.
30. Welte Y., et al., (2013) Patient Derived Cell Culture and Isolation of CD133+ Putative Cancer Stem Cells from Melanoma. Journal of Visualized Experiments.
31. Tillotson LG., et al., (2001) Isolation, Maintenance, and Characterization of Human Pancreatic Islet Tumor Cells Expressing Vasoactive Intestinal Peptide Pancreas. Jan;22(1):91-8.
32. Nakashiro K., et al., (2004) Phenotypic Switch from Paracrine to Autocrine Role of Hepatocyte Growth Factor in an Androgen-Independent Human Prostatic Carcinoma Cell Line, CWR22R. American Journal of Pathology, 165(2): 533-540.
33. Sheela S., et al., (1990) Angiogenic and invasive properties of neurofibroma Schwann cells. Journal of Cell Biology, 111(2): 645-653.
34. Sacks P G., et al., (1988) Establishment and characterization of two new squamous cell carcinoma cell lines derived from tumors of the head and neck. Cancer Research, 48(10): 2858-2866.
35. Kim M P., et al., (2009) Orthotopic and heterotopic generation of murine pancreatic cancer xenografts [J]. Nature Protocols, 4(11): 1670-1680.
36. Rasheed Z A., et al., (2010) Isolation of Stem Cells from Human Pancreatic Cancer Xenografts. Journal of Visualized Experiments.
37. Vaughan A E., et al., (2011) Lung Cancer in Mice Induced by the Jaagsiekte Sheep Retrovirus Envelope Protein Is Not Maintained by Rare Cancer Stem Cells, but Tumorigenicity Does Correlate with Wnt Pathway Activation. Molecular Cancer Research, 10(1): 86-95.
38. Liu X., et al., (2013) Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy. Scientific Reports , 3(1): 2473-2473.
39. Kazerounian S., et al., (2013) RhoB differentially controls Akt function in tumor cells and stromal endothelial cells during breast tumorigenesis. Cancer Research, 73(1): 50-61.
40. Mazzoleni S., et al., (2013) Gene Signatures Distinguish Stage-Specific Prostate Cancer Stem Cells Isolated From Transgenic Adenocarcinoma of the Mouse Prostate Lesions and Predict the Malignancy of Human Tumors. Stem Cells Translational Medicine, 2(9): 678-689.
41. Duarte S., et al., (2013) Preventive Cancer Stem Cell‐Based Vaccination Reduces Liver Metastasis Development in a Rat Colon Carcinoma Syngeneic Model. Stem Cells, 31(3): 423-432.
42. Gazdar A F., et al., (1980) Continuous, clonal, insulin- and somatostatin-secreting cell lines established from a transplantable rat islet cell tumor. Proceedings of the National Academy of Sciences of the United States of America, 77(6): 3519-3523.
43. Sharma N K., et al., (1999) A Novel Immunological Model for the Study of Prostate Cancer. Cancer Research, 59(10): 2271-2276.
發(fā)布者:美國(guó)PeproTech(派普泰克)公司
聯(lián)系電話:40000 53055,0512 6832 5983
E-mail:peprotech.infochina@thermofisher.com

用戶名: 密碼: 匿名 快速注冊(cè) 忘記密碼
評(píng)論只代表網(wǎng)友觀點(diǎn),不代表本站觀點(diǎn)。 請(qǐng)輸入驗(yàn)證碼: 8795
Copyright(C) 1998-2025 生物器材網(wǎng) 電話:021-64166852;13621656896 E-mail:info@bio-equip.com
主站蜘蛛池模板: 亚洲国产成人丁香五月激情 | 久久人91精品久久久久久不卡 | 亚洲aⅴ网站 | 国产精品理论在线无码 | 毛片久久久久久久 | 亚洲第一福利网站在线 | 网站啪啪| 欧美精品免费在线 | 亚洲中文字幕一区精品自拍 | 影视av久久久噜噜噜噜噜三级 | 三级毛片视频 | 精品国产2区 | 久久综合久久88 | 日本性一级 | 亚洲美女在线一区 | 40集全部免费观看 | 国产人澡人澡澡澡人视频 | 国产精品久久国产精麻豆96堂 | 91国产在线视频在线观看 | 中国老妇xxxx性开放 | 99久久夜色精品国产亚洲狼 | 谍战剧《惊弦》在线观看免费高清 | 三级黄色影院 | 97性潮久久久久久久久动漫 | 久久网一区二区三区 | 无码人妻一区二区三区免费 | 97爱网站| 一区二三区日韩精品 | 影音先锋男人在线资源资源网 | 成人免费毛片立即播放 | 久久国产午夜精品理论片 | 亚洲午夜福利院在线观看 | 农村末发育av片四区五区 | 最近免费中文字幕大全高清MV | 欧美日韩在线视频播放 | 日本中文字幕视频在线观看 | 欧洲尺码日本尺码专线图片 | 高清毛茸茸的中国少妇 | 国产一级黄色片免费看 | 日韩亚洲国产中文字幕 | 国产成人精品高清在线 |